Skip to article frontmatterSkip to article content

Lattice-Based Folding Schemes

ZKPunk

This document provides a comprehensive comparison of various lattice-based folding schemes used in cryptographic protocols.

Overview Table

SchemeYearSecurity AssumptionCommitment TypeSoundness ErrorCommunication ComplexityProver TimeVerifier TimeKey Features
Latticefold2022SIS/LWEVector Commitment1/qO(log n) roundsO(n log n)O(log² n)First lattice folding, recursive structure
Lova2022SIS/LWEPolynomial Commitment1/qO(log n) roundsO(n log n)O(log n)Optimized verifier, better concrete efficiency
Latticefold+2023SIS/LWE + Ring-SISStructured Commitment1/q²O(log n) roundsO(n)O(log n)Improved soundness, ring structure
Neo2023Module-SIS/LWEModule Commitment1/qO(1) roundsO(n)O(1)Constant rounds, module lattices

Detailed Comparison

Security Foundations

SchemeHard ProblemLattice TypeDimensionModulusRing Structure
LatticefoldSIS₍ₙ,ₘ,q,β₎Integer Latticen = 2ᵏPrime qNone
LovaSIS₍ₙ,ₘ,q,β₎ + LWE₍ₙ,q,χ₎Integer Latticen = 2ᵏPrime qNone
Latticefold+Ring-SIS₍f,q,β₎Ring Latticedeg(f) = 2ᵏPrime qZ[X]/(Xⁿ+1)
NeoModule-SIS₍d,n,q,β₎Module Latticerank d, dim nPrime qR^d where R = Z[X]/(Xⁿ+1)

Performance Characteristics

SchemeProof SizeSetup SizeCRS SizePreprocessingPost-quantumPractical
LatticefoldO(log n) field elementsO(n)O(n)NoneLimited
LovaO(log n) field elementsO(n)O(n log n)MinimalBetter
Latticefold+O(log n) ring elementsO(n)O(n)Ring arithmeticGood
NeoO(1) module elementsO(n)O(d·n)Module arithmeticExcellent

Technical Innovations

Latticefold (2022)

Lova (2022)

Latticefold+ (2023)

Neo (2023)

Applications and Use Cases

SchemeBest ForSNARKsSTARKsPolynomial IOPVector Commitment
LatticefoldProof of concept
LovaResearch prototypes
Latticefold+Structured computations
NeoProduction systems

Implementation Status

SchemeReference ImplementationOptimized ImplementationBenchmarks AvailableAudit Status
LatticefoldResearch codeLimitedNone
LovaResearch codePartialAvailableNone
Latticefold+Research codeLimitedNone
NeoProduction readyComprehensiveIn progress

Concrete Parameters (128-bit security)

SchemenqβProof Size (KB)Prover Time (s)Verifier Time (ms)
Latticefold40962³¹-12¹⁰321.250
Lova40962³¹-12¹⁰280.830
Latticefold+20482³¹-12⁹240.625
Neo10242³¹-12⁸160.315

Future Directions

  1. Efficiency Improvements: Reducing concrete costs and constants
  2. New Structures: Exploring ideal lattices and other algebraic structures
  3. Batching: Better amortization across multiple proofs
  4. Hardware: ASIC/FPGA implementations for production use

Open Problems

  1. Lower Bounds: Theoretical limits of lattice folding
  2. New Assumptions: Exploring weaker or more standard assumptions
  3. Quantum Analysis: Better understanding of quantum attacks
  4. Standardization: Moving towards cryptographic standards

References

Note: This table represents the current state of research as of 2024. Parameters and performance may vary based on specific implementations and optimizations.