Skip to article frontmatterSkip to article content

Lattice-Based Polynomial Commitment Schemes

ZKPunk

This document provides a comprehensive comparison of lattice-based polynomial commitment schemes used in cryptographic protocols.

Overview Table

SchemeYearSecurity AssumptionCommitment TypeOpening SizeVerification TimeKey Features
Ajtai1996/2008SISBasic VectorO(n)O(n)First lattice commitment
BDLOP182018SIS/LWEPolynomialO(log d)O(log d)Merkle tree structure
Latern2022Module-SISPolynomialO(1)O(1)Constant size openings
Slap2022Ring-SISPolynomialO(log d)O(log d)Structured lattices
Labrador2023Module-LWEPolynomialO(√d)O(√d)Square-root complexity
Greyhound2023NTRUPolynomialO(log d)O(log d)NTRU-based efficiency
HyperWolf2024Hypercube-SISMultivariateO(log^k d)O(log^k d)Hypercube structure

Detailed Technical Comparison

Security Foundations

SchemeHard ProblemLattice StructureDimensionModulusRing/Module
AjtaiSIS_{n,m,q,β}Integer Latticen×mPrime qZ^n
BDLOP18SIS_{n,m,q,β} + LWEInteger Latticen×mPrime qZ^n
LaternModule-SIS_{d,n,q,β}Module Latticerank d, dim nPrime qR^d, R=Z[X]/(X^n+1)
SlapRing-SIS_{f,q,β}Ring Latticedeg(f)Prime qZ[X]/(f(X))
LabradorModule-LWE_{d,n,q,χ}Module Latticerank d, dim nPrime qR^d, R=Z[X]/(X^n+1)
GreyhoundNTRU_{n,q}NTRU LatticenPrime qZ[X]/(X^n-1)
HyperWolfHypercube-SISHypercube Lattice2^k dimensionsPrime qTensor products

Polynomial Commitment Properties

SchemeMax DegreeBatch OpeningAggregationPreprocessingTransparent Setup
AjtaiN/ANone
BDLOP182^kPartialMinimal
LaternUnboundedModule ops
Slap2^kRing FFT
Labrador2^kModule arithmetic
Greyhound2^kNTRU operations
HyperWolf2^{k×ℓ}Hypercube FFT

Performance Characteristics

SchemeCommit TimeOpen TimeVerify TimeCommit SizeOpening SizeCRS Size
AjtaiO(n²)O(n)O(n)O(n log q)O(n log q)O(n²)
BDLOP18O(d log d)O(log² d)O(log² d)O(log q)O(log d · log q)O(d)
LaternO(d log d)O(log d)O(log d)O(d log q)O(log q)O(d)
SlapO(d log d)O(log d)O(log d)O(log q)O(log d · log q)O(d)
LabradorO(d log d)O(√d log d)O(√d)O(log q)O(√d log q)O(d)
GreyhoundO(d)O(log d)O(log d)O(log q)O(log d · log q)O(d)
HyperWolfO(d log^k d)O(log^k d)O(log^k d)O(log q)O(log^k d · log q)O(d)

Concrete Security Parameters (128-bit security)

Schemen/dqβCommitment Size (bytes)Opening Size (bytes)Setup Size (MB)
Ajtai10242³¹-12¹⁰4096409616
BDLOP1820482³¹-12¹⁰323208
Latern10242³¹-12⁹128324
Slap20482³¹-12¹⁰322568
Labrador10242³¹-12⁹321284
Greyhound10242³¹-12⁸321924
HyperWolf5122³¹-12⁸321602

Technical Innovations by Scheme

Ajtai (1996/2008)

BDLOP18 (2018)

Latern (2022)

Slap (2022)

Labrador (2023)

Greyhound (2023)

HyperWolf (2024)

Applications and Use Cases

SchemeSNARKsSTARKsVector OracleMultivariateBatch ProofsProduction Ready
AjtaiResearch only
BDLOP18Prototype
LaternNear production
SlapPrototype
LabradorDevelopment
GreyhoundProduction
HyperWolfResearch

Implementation and Benchmarks

Reference Implementations

SchemeLanguageRepositoryOptimization LevelBenchmarks
AjtaiC/SageAcademicBasicHistorical
BDLOP18C++GitHubModerateAvailable
LaternRustGitHubHighComprehensive
SlapC++/RustGitHubModerateAvailable
LabradorRustGitHubHighIn progress
GreyhoundC++/RustCommercialProductionComprehensive
HyperWolfRustGitHubResearchLimited

Performance Comparison (Single Core, 3.2GHz)

SchemeCommit (ms)Open (ms)Verify (ms)Degree 2¹⁶Degree 2²⁰
BDLOP181504512
Latern8085
Slap120258
Labrador100156
Greyhound60124
HyperWolf90207

Theoretical Advances

Complexity Theory Results

Security Analysis

Future Research Directions

Short-term Goals (1-2 years)

  1. Implementation Optimization: Hardware acceleration, vectorization
  2. Parameter Optimization: Better concrete security analysis
  3. Standardization: Moving towards cryptographic standards

Medium-term Goals (3-5 years)

  1. New Structures: Exploring other algebraic structures
  2. Quantum Analysis: Better understanding of quantum attacks
  3. Applications: Integration with major ZK systems

Long-term Vision (5+ years)

  1. Theoretical Breakthroughs: New complexity results
  2. Hardware Integration: Custom silicon for lattice operations
  3. Standards Adoption: Widespread deployment in production

Conclusion

The landscape of lattice-based polynomial commitment schemes has evolved rapidly from the foundational Ajtai construction to modern efficient schemes like Greyhound and the cutting-edge multivariate approach of HyperWolf. Each scheme represents different trade-offs between security assumptions, efficiency, and functionality.

Current Recommendations:

The field continues to advance rapidly with new theoretical insights and practical optimizations being developed regularly.